RecA-independent recombination: Dependence on the Escherichia coli RarA protein

Kanika Jain | Elizabeth A. Wood | Zachary J. Romero | Michael M. Cox

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA

Correspondence
Michael M. Cox, Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
Email: cox@biochem.wisc.edu

Funding information
National Institute of General Medical Sciences. Grant/Award Number: RM1 GM130450

1 | INTRODUCTION

Most of the homologous recombination that occurs during normal growth in bacteria is closely tied to replication (Cox et al., 2000; Kowalczykowski, 2000; Kuzminov, 1999; Michel, 2000). Replication forks can stall when encountering roadblocks, such as DNA lesions, template-strand breaks, or DNA-bound proteins. Stalling, particularly when it involves an encounter with a template strand break, may lead to a double strand break, fork collapse, and replisome dissociation (Cox, 2001; Cox et al., 2000; Heller & Marians, 2006; Klein & Kreuzer, 2002; Kowalczykowski, 2000; Kuzminov, 1999; Kuzminov, 2001; Lopes et al., 2001; Merrikh et al., 2012; Michel, 2000; Michel et al., 2007). Although estimates vary, replication forks in bacteria may stall or collapse as often as once per cell generation during normal growth conditions (Cocuelle et al., 2015; Cox, 2001; Cox, 2002; Cox et al., 2000; Kuzminov, 1995; Mangiameli et al., 2017; McCool et al., 2004; Michel et al., 2001; Michel et al., 2004; Romero et al., 2019; Romero et al., 2020; Syeda et al., 2014).

Most of the adverse replication-fork encounters are resolved using a variety of pathways that do not introduce mutations, particularly recombinational DNA repair (Aguilera & Garcia-Muse, 2013; Cox, 2001; Cox, 2002; Cox et al., 2000; Heller & Marians, 2006; Klein & Kreuzer, 2002; Kowalczykowski, 2000; Kuzminov, 1999; Kuzminov, 2001; Lopes et al., 2001; Merrikh et al., 2012; Michel, 2000; Michel et al., 2007; Mirkin & Mirkin, 2007).

When bacterial cells are stressed by conditions that increase levels of DNA damage, the SOS response is induced. In the early stages of SOS, nonmutagenic pathways for DNA repair still predominate. However, if the SOS response is prolonged, a different set of pathways for DNA damage tolerance becomes more prominent. These pathways involve specialized DNA polymerases that carry out translesion DNA synthesis (TLS) (Fuchs, 2016; Gabbai et al., 2014; Goodman, 2002; Goodman, 2016; Goodman et al., 2016; Goodman & Woodgate, 2013; Gruber et al., 2015; Ikeda et al., 2014; Indiani et al., 2013; Jeiranian et al., 2013; Jiang et al., 2009; Kath et al., 2016; Kath et al., 2014; Mallik et al., 2015; Margara et al., 2016; Robinson...
et al., 2015). In E. coli, TLS is carried out by DNA polymerases II, IV, and V (Goodman & Woodgate, 2013). Under normal aerobic conditions, TLS can become important when nonmutagenic pathways for replication-fork repair are blocked (Naiman et al., 2016).

Replication forks do not always stall when encountering a template lesion. In at least some cases, the replisome skips over lesions, leaving them behind in what is termed a postreplication gap. In bacteria, the postreplication gap is closed by either translesion DNA synthesis, template switching, or by recombinational DNA repair via the RecFOR pathway (Fuchs, 2016; Fujii et al., 2006; Laranjo et al., 2017; Lovett, 2017; Naiman et al., 2016; Romero et al., 2019; Romero et al., 2020). Failure to close a gap inevitably leads to a double-strand break when the gap is encountered in the next replication cycle (Cox et al., 2000).

Whereas most detectable homologous recombination events in bacteria depend upon the RecA recombinase, a substantial level of RecA-independent recombination can be documented under some conditions (Albertini et al., 1982; Andersson & Hughes, 2009; Bi & Liu, 1994; Bzymek & Lovett, 2001; Bzymek et al., 1999; Chédin et al., 1994; Dianov et al., 1991; Dutra et al., 2007; Goldfless et al., 2006; Lovett, 2017; Lovett et al., 1993; Lovett & Feschenko, 1996; Lovett et al., 1994; Lovett et al., 2002; Mazin et al., 1991; Morag et al., 1999; Saveson & Lovett, 1997; Zienkiewicz et al., 2013). Much of the RecA-independent events can be traced to a particular form of template switching. Template switching involves the pairing of DNA through alignment, either with itself, with a parental strand or with another sister nascent strand. As a term, "template switch" has a complex history. It has been associated with at least three types of substrate processing, only one of which suits the process we will be discussing here. The first of these is the fork reversal template switching that sometimes occurs to overcome leading strand barriers to rescue replication (Lovett, 2017; Poole & Cortez, 2017; Vujanovic et al., 2017). Based on biochemical evidence, this process might be mediated by RecA, RuvAB, or RecG (McGlynn & Lloyd, 2000). The second process sometimes described as template switching is the recombinational DNA repair mediated by RecA or Rad51 family recombinases (Branzei & Szakal, 2017; Jalan et al., 2019; Pietrobon et al., 2014).

In this report, we focus only on a third process: recombinase (RecA)-independent template switching, primarily in gaps behind the replication fork. Rearrangements between repeated sequences, even though they are homology-dependent, can occur independently of RecA. The rate of recombination depends on the size of repeats and the distance between them (Dutra et al., 2007; Lovett, 2017; Lovett et al., 2002). These RecA-independent rearrangements are stimulated in mutants that affect the DNA polymerase III core, clamp loader complex or other proteins involved in DNA replication and restart pathways (Lovett et al., 1994; Saveson & Lovett, 1997). Homology-dependent but RecA-independent recombination, therefore, can result in genetic rearrangements during DNA replication that are associated with crossovers between sister chromosomes. However, lack of information about the frequency with which RecA-independent template switching occurs and the proteins involved in this pathway makes it difficult to understand its contribution to cell maintenance. RecA-independent recombination is sufficient to render satellite DNA (large arrays of tandemly repeating, noncoding DNA) unstable even when cloned in plasmid vectors and are grown in ΔrecA strains (Brutlag et al., 1977).

We have recently initiated the study of several proteins that may function in the repair of gaps. The current study explores the function of the RarA protein. The Escherichia coli RarA protein is an AAA−ATPase (447 amino acid residues; 49.6 kDa). RarA is part of a family with close homologs in eukaryotes (Mgs1 in yeast, WRNIP1 in humans). Sequence conservation within the family is extensive, with RarA sharing roughly 40% identity and 56%–58% similarity with its Saccharomyces cerevisiae (Mgs1) and Homo sapiens (WRNIP1) homologs (Barre et al., 2001; Sherratt et al., 2004). This extensive homology suggests a conserved function in DNA metabolism. RarA also shares considerable sequence homology with the ε, δ, and δ′ subunits of the DNA polymerase III clamp-loader complex, placing RarA in the clamp-loader AAA−ATPase clade. The protein has also been referred to as MgsA, a reference to its homology with the yeast protein Mgs1 (Shibata et al., 2005). As the RarA designation was proposed first (Barre et al., 2001), and to avoid confusion with the mgsA acronym previously assigned to the gene encoding methylglyoxal synthase (Totemeyer et al., 1998), we use the rra nomenclature. It is well documented that the RarA family of proteins is involved in the maintenance of genome stability in cells, but its function and mechanism of action remain uncertain in spite of nearly two decades of work.

Several dozen studies have now been published on the RarA/Mgs1/WRNIP1 protein family. Although these have yielded a complex, and sometimes contradictory plethora of observations, several themes are evident. First, RarA family members localize to the replisome through interactions with either the single-stranded DNA binding protein, SSB (RarA), or ubiquitinated processivity clamp PCNA (Mgs1 and WRNIP1) (Barre et al., 2001; Bish & Myers, 2007; Costes et al., 2010; Crosseto et al., 2008; Lau et al., 2003; Page et al., 2011; Saugar et al., 2012; Sherratt et al., 2004). Second, the sequence and structure of RarA (and by extension the other members of this family) place it in the clamp-loader clade of AAA−ATPases (Page et al., 2011). However, it appears to function as a tetramer rather than having the usual pentameric structure (Page et al., 2011). Third, RarA has an effect on replisome stability and somehow promotes TLS (Kelman & O’Donnell, 1995; Michel & Sinha, 2017; Shibata et al., 2005; Vandewiele et al., 2002; Yoshimura et al., 2017). Fourth, RarA, Mgs1, and WRNIP1 all exhibit a DNA-dependent ATPase activity in vitro that specifically targets duplex DNA ends and gap boundaries (Branzei et al., 2002b; Hishida et al., 2001; Kim et al., 2005; Page et al., 2011; Stanage et al., 2017; Tsurimoto et al., 2005). Fifth, RarA function appears to complement a range of DNA damage tolerance pathways (Branzei et al., 2002a; Branzei et al., 2002b; Hayashi et al., 2008; Hishida et al., 2001; Hishida et al., 2002; Motlagh et al., 2006; Sherratt et al., 2004; Shibata et al., 2005; Yoshimura et al., 2006; Yoshimura et al., 2009). These genetic results suggest that RarA does not belong to any currently defined repair pathway.

Monitoring of template switching events is made possible by engineered genetic events that can be traced to postreplication gaps. Lovett and colleagues (Lovett et al., 2002) developed an assay to
detect crossing over events between two replicons sharing varied lengths of the homologous regions. Efficient RecA-dependent recombination requires a homology threshold of around 200bp (Bi & Liu, 1994; Dutra et al., 2007; Lovett et al., 2002). Recombination events involving shorter regions of homology are largely RecA-independent. This assay permits identification of proteins involved in either recombination or processing of recombination intermediates in the RecA-independent pathway.

Shinagawa and colleagues (Shibata et al., 2005) have previously reported evidence for an apparent overlap between RecA and RarA function. That theme is evident in the current work. We have made use of several assays of intramolecular and intermolecular recombination in vivo, all of which are linked with events that occur in postreplication gaps. In particular, a class of RecA-independent recombination events has been associated with postreplication gaps (Lovett, 2017). Here, we demonstrate that much of this RecA-independent recombination is dependent on RarA.

2 | RESULTS

2.1 | RecA-independent recombination is dependent on RarA

Much of this study makes use of strains having a deletion of the rarA gene. In unpublished work, we have determined that the end of the rarA gene encoding the C-terminal 41 amino acid residues of the RarA protein includes sequences that affect expression of the downstream serS gene. As expression of serS directly affects the stringent response (Tosa & Pizer, 1971), a complete deletion of rarA generates growth and survival phenotypes that reflect the stringent response rather than a lack of rarA function. We have constructed a deletion of the first 406 of the 447 codons of RarA (ΔrarA N406), which avoids all effects on serS. This is the rarA deletion strain used in all the work that follows. As a further control using P1 transduction, we have been able to cross this N406 deletion back into WT (MG1655) cells with no measurable effect on growth.

We suspected that RarA is involved in some aspect of RecA-independent recombination in gaps, due to the DNA binding and flap creation properties of this protein. Once gaps are generated, RarA might be promoting the RecA independent template switching process or facilitating the activity of another protein. We examined the effect of deleting rarA on RecA-independent intermolecular recombination utilizing the plasmid-based assay developed by Lovett and colleagues (Lovett et al., 2002). Two sets of plasmids sharing the homology length of 104 bp or 411 bp were used. Recombination efficiencies were tested separately in strains with deletions in rarA, recA, or both. Deletion of the rarA gene alone decreased recombination between 104 bp homologous segments slightly but did not hamper recombination between 411 bp homology sharing regions to a significant extent. Loss of recA, however, shows a small reduction in recombination at the homology length of 104 bp compared to WT and a larger approximately 10-fold reduction at 411 bp homology length (Figure 1). This result agrees with previous studies (Lovett et al., 2002), indicating RecA-dependent recombination predominates when homologous segments are over 200 bp in length (Bi & Liu, 1994). Analysis of the recombination frequency in the double mutant ΔrecA ΔrarA showed a significantly decreased recombination rate, by a factor of 11- and 6-fold at 104 bp and 411 bp homology sharing regions plasmids respectively, when compared to the ΔrecA strain (Figure 1). This demonstrates a significant dependence of RecA-independent intermolecular recombination on RarA protein at both homology lengths, although the distinction is amplified with the shorter homology since RecA-dependent events on this substrate are less efficient.
2.2 | RarA requires its ATPase activity to mediate RecA-independent recombination

To determine the functional role of the RarA ATPase activity in RecA-independent recombination, we analyzed the changes in recombination efficiency when the RarA K63R variant is present in recA-deficient cells (Figure 2). An ATPase-dead RarA, RarA K63R (Page et al., 2011) showed a decrease in recombination equivalent to a ΔrarA strain in the ΔrecA background at all homology lengths tested. This observation indicates that the ATPase activity of RarA is required in whatever role RarA has in promoting RecA-independent recombination.

2.3 | RarA mediates little intramolecular crossing over in RecA-deficient cells

Having explored intermolecular recombination events, we next focused on the effect of a RarA deletion on intramolecular repeat deletion events associated with RecA-independent template switching in gaps. We utilized a multicopy plasmid pSTL57 carrying 101 bp direct repeats adjacent to each other. A successful deletion event confers resistance to tetracycline, allowing ready detection. Deletion of rarA did not significantly reduce the deletion events in a ΔrecA background with the plasmids carrying repeats adjacent to each other (Figure 3a). This overall pattern remained consistent even with the use of different plasmids where repeats were separated either by larger distances or a stem loop structure (Figure S1). The results suggest that RarA contributes little to recombination events involving nearby repeated sequences on the same DNA molecule.

However, an involvement of RarA in intermolecular recombination is still evident. Gel analysis of the plasmids isolated from the tetracycline resistant survivor cells in these strains revealed an important effect of RarA—facilitation of crossing over. Plasmids isolated from tetracycline resistant colonies of WT and ΔrarA strains exhibited a combination of deleted, normal sized, and large sized plasmids. These large species are primarily dimers, with perhaps a few larger species or replication intermediates mixed in. These are presumably generated by crossing over mediated at least in part by RarA. In the ΔrecA strain, these larger plasmid species were prominent in 9 of 17 randomly chosen isolates, with a representative sample of seven of these shown in Figure 3b. Monomeric sized plasmids were totally absent in those nine isolates. In contrast, when RarA function was also missing (ΔrarAΔrecA cells), the large-sized plasmids almost disappeared. None of 10 randomly chosen isolates lacked monomeric plasmids, with six examples shown in Figure 3b. The plasmids analyzed in Figure 3b come from TetR survivors of the selection, which can be generated by both intramolecular and intermolecular recombination. When RarA is available, the intermolecular events become more prominent.

This direct visualization of the plasmids suggests that RarA is responsible either for crossover-mediated dimer and multimer formation in ΔrecA strains or in the long-term maintenance of these larger plasmid products after they are formed. A subset of RecA-independent rearrangements is dependent on RarA and are associated with replicon dimerization. Deletion does not necessarily accompany those events. Hence, no significant reduction was observed upon the elimination of RarA in these cells.

2.4 | Potential involvement of other proteins in RecA-independent recombination

RecA-independent recombination cannot be entirely attributed to RarA. In the absence of RecA and RarA, there is still a small background of recombination that we wished to explore further. For the following sets of experiments, the intermolecular recombination assay described in Figure 1 was utilized.

Exonucleases. Lovett and colleagues (Dutra et al., 2007) reported that the recombination frequency in the absence of recA is equal to the frequency in recA+ cells if exonucleases were deleted. We aimed to determine the effect of rarA deletion on the efficiency of recombination when both 3’→5’ and 5’→3’ exonucleases are deleted in ΔrecA strain. We found that the deletion of recJ (5’→3’ exonuclease) and exol (3’→5’ exonuclease) in a ΔrecA background increases the
recombination frequency by 4-fold and 10-fold, respectively, when a shorter homology length (104 bp; Figure 4) or longer homology region (411 bp; Figure S2) was assayed and compared to a ΔrecA strain. Differences were statistically significant at α = 0.083 value. With the shorter homology, the pattern continued even when rarA was deleted. The results suggest that intermediates for an alternative recombination pathway are generated, even in the absence of RecA or RarA. These intermediates are destroyed by the exonucleases. With the longer homology, recombination again increased when the exonucleases were deleted. However, in this case, the loss of both recA and rarA caused about a 15-fold decline relative to the recombination seen in the ΔrecJ ΔexoI strain, albeit not to the low level seen when exonuclease function was intact.

RecF, RecO, and RecR. A series of experiments, presented in Figure 4 (in combination with exonuclease deletions) and in Figure 5, were carried out to explore the effects of the RecFOR proteins. Due to many phenotypic similarities, these three proteins are often associated in an epistasis group involved in the loading of RecA protein into gaps and in gap repair (Clark & Sandler, 1994; Madiraju et al., 1992; Sawitzke & Stahl, 1992; Smith & Wang, 1989; Wang et al., 1993; Whitby & Lloyd, 1995). However, recent studies have identified phenotypic and spatiotemporal distinctions between recF and recO (Grompone et al., 2004; Henrikus et al., 2019; Sandler, 1994; Sandler & Clark, 1993; Sandler & Clark, 1994). RecF and RecO both form complexes with RecR, but not with each other (Bork et al., 2001; Henrikus et al., 2019; Honda et al., 2006; Webb et al., 1995; Webb et al., 1997). The effects of recFOR deletions in rarA/recA backgrounds were first explored in exonuclease-deficient strains. RecFOR works along with RecA to repair single-stranded gaps. In almost all cases, deletion of recO or recF in exonuclease and

FIGURE 3 RarA mediates limited intramolecular crossing over in RecA-deficient cells. (a) DNA deletion frequencies were assayed using the pSTL57 plasmid bearing direct 101 bp Tet repeats adjacent to each other in WT, recA, rarA, and recArarA strains. Successful deletion events result in resistance to tetracycline. Error bars represent the standard deviation of at least five experiments. (b) Plasmids were isolated from TetR recombinants from the assay in panel A. Gel electrophoresis was carried out as described in Methods. The control gel at right displays the purified pSTL57 plasmid and its cleaved linear form. The set of DNA markers is identical to that used in the data gel on the left.
recA/rarA-deficient backgrounds resulted in a reduction in the recombination rate (Figure 4). The result indicates that RecO and RecF may have some role in generating or processing the intermediates that lead to recombination when exonucleases do not remove them, a role that is independent of RecA or RarA. One result obtained with the longer (411 bp; Figure S3) homology was otherwise notable. When rarA, recJ, and exoI were all deleted, a further deletion of recA and recF resulted in a significantly greater decline in recombination frequency than a further deletion of recO. In vitro, RecO has been more directly implicated in RecA protein loading than RecF (Hobbs et al., 2007; Lenhart et al., 2014; Shan et al., 1997; Umezu & Kolodner, 1994).

We also explored the effects of recFOR deletions in strains that possess the exonucleases but lack rarA, recA, or both (Figure 5). In this case, the cells lacking one of the recFOR genes exhibit recombination deficits that generally paralleled those seen for recA deletions, with some notable exceptions. For recombination involving the shorter (104 bp) homology, deleting recR has the least effect of the recFOR trio. A further deletion of rarA has little effect on these results except when it is paired with a deletion of recA, a pairing that consistently produced the largest decline in recombination frequency. Pairing recA deletions with deletions of one of the recFOR proteins elicited an apparent additional decline in recombination frequency, albeit small. When rarA and recA are both missing, a further deletion of either recO or recR actually permitted a significant increase in recombination, although deleting recF did not.

The same set of experiments was carried out with the larger (411 bp) homology (Figure S3), where RecA-mediated recombination plays a larger role in the overall observed frequency. In this case, the decline observed when recFOR deletions were paired with recA deletions were clearly greater than seen with recA alone, again suggesting recA-independent roles for the RecFOR proteins. The declines were comparable in this case to those seen in the ΔrecAΔrarA strain. In the ΔrecAΔrarA background, a deletion of recO (but in this case not recR) again produced an increase in recombination. RecO (and to some extent RecR) appears to have an activity that interferes with the rare recombination that might occur in the absence of RarA and RecA.

2.4.1 | TLS polymerases

A similar set of experiments was carried out in strains lacking one of the three TLS DNA polymerases, Polymerases II, IV, and V. For recombination involving either homology length, no effect was seen when a TLS polymerase deletion was paired with a rarA deletion. Deleting one of the TLS polymerases further decreased the recombination frequency when paired with a recA deletion, approaching the declines noted in the ΔrecAΔrarA background (Figure 6 and Figure S4 for substrates with 104 and 411 bp homologies, respectively). This result suggests that TLS polymerases may play a role in RecA-independent recombination, possibly even in the same pathway as RarA.

2.5 | Elimination of the RarA-dependent and RecA-independent recombination pathway improves the growth of XerD-deficient cells

XerD is a site-specific tyrosine recombinase, which along with XerC, is required to resolve chromosome dimers into monomers to facilitate cell segregation. Many of these dimers arise as a result of DNA
crossovers that occur during replication, behind the replication fork in postreplication gaps. When dimer resolution falters, cell growth is impacted. We were, therefore, interested in the effects of recA and rarA deletions on cell growth in the absence of xerD, reasoning that a reduction in recombination in postreplication gaps would reduce dimer formation. Growth curves are presented in Figure 7. As expected, XerD-deficient cells exhibit significant growth defects when cells are grown under normal conditions in LB media, reflected primarily in the final cell density at which the cultures enter stationary phase. As seen before, deletion of recA also causes growth defects. The effects of rarA deletions are generally minimal. However, the deletion of both rarA and recA genes completely rescues the growth defect of ΔxerD cells. The results suggest that a pathway involving RarA creates crossover products independently of RecA under normal conditions that then require the XerCD pathway for resolution of the resulting dimers. Eliminating both RarA and RecA reduces chromosomal dimer formation sufficiently to restore optimal growth.

2.6 | Loss of RarA increases the sensitivity of RecA-deficient cells to UV but not to other drugs

We explored the sensitivity of cells lacking rarA, recA or both to different DNA damaging agents. Loss of rarA itself does not exhibit sensitivity to UV, Ciprofloxacin, NFZ, Coumermycin, MMC, or H2O2. Loss of rarA, however, in ΔrecA cells slightly increases the sensitivity of recA cells to UV. This effect is limited to UV damage. Subtraction of RarA in ΔrecA cells does not affect its sensitivity to any of the other agents tested (Figure S5). The results indicate that the recombination pathway involving RarA may be somewhat more prominent when damage is in the form of pyrimidine dimers. As mentioned above, deletion of xerD improves the growth of ΔrarAΔrecA cells (and vice versa). However, a xerD deletion does not affect the sensitivity of this strain to UV. This indicates no significant role of XerD in DNA damage suppression or repair pathways in ΔrarAΔrecA cells.

2.7 | In vivo cloning in E. coli is partially dependent on RarA

The cloning of a DNA segment into a circular plasmid in vitro has been a common procedure used in recombinant DNA technology (Kaufman & Evans, 1990; Scharf et al., 1986). In contrast to the common and standard in vitro recombination protocols, studies have found that some strains of E. coli can assemble linear DNA fragments to form a plasmid in vivo (Bubeck et al., 1993; García-Nafria et al., 2016; Huang et al., 2017; Kostylev et al., 2015; Oliner et al., 1993). Linear DNAs including vector and engineered segments, containing terminal sequences with as little as 20 bp of homology, are co-transformed into an appropriate E. coli strain to obtain a recombinant plasmid. This process is independent of RecA-based recombination. The prophage RecET recombinase was initially identified as an important contributor (Bubeck et al., 1993; Jacobus & Gross, 2015; Kostylev et al., 2015; Oliner et al., 1993). However, recent work indicates that RecET is not required and that exonuclease XthA plays a key role (Nozaki & Niki, 2019). The detailed mechanism of in vivo cloning remains uncertain.

We wished to determine if RarA affected RecA-independent in vivo cloning efficiency (Figure 8). Cloning was performed in ΔhsdR (WT) and ΔhsdR ΔrarA cells as detailed in the methods section and shown in Figure 8a and b. The hsdR gene encodes for a type I restriction enzyme, EcoKI, which cleaves DNA at specific recognition sequences 5′-AACN6GTGC-3′ (Sain & Murray, 1980). The hsdR background was chosen to prevent degradation of pUC19 DNA, which contains an EcoKI recognition sequence. Plasmids isolated from colonies that were resistant to both chloramphenicol (Cm) and ampicillin (Amp) antibiotics were checked on an agarose gel (Figure 8c).
Recombined plasmids were consistently present in the Cm/Amp-resistant colonies. In vivo *E. coli* cloning efficiency was calculated by dividing recombination efficiency (no. of colonies resistant to Cm/Amp) to transformation efficiency. This eliminated the probability of false detection due to low DNA uptake or plasmid maintenance. A deletion of *rarA* reduced the in vivo cloning efficiency by 20%–60% relative to a strain with the same genetic background but with a WT *rarA* gene. This indicates that RarA, unlike RecA, may facilitate recombination with short (20 bp) homologous regions in *E. coli* cells.

3 | DISCUSSION

Our major conclusion is that RarA plays a major role in RecA-independent recombination in *E. coli* (Figure 9). This role is especially prominent for intermolecular recombination events involving short (<200 bp) homologies. The role of RarA in recombination is largely obscured when RecA function is present, as *rarA* deletions have little effect on measured levels of recombination on their own. The pathways in which RarA participates thus function at a relatively low level in wild-type cells. However, that level is sufficient for RarA to make a significant contribution to in vivo cloning protocols and can affect the stability of cloned DNA with repeated sequence elements. Shinagawa and colleagues previously published evidence for a functional overlap between RarA and RecA (Shibata et al., 2005). The current study supports and expands upon this idea. In addition, the results provide broader insight into the molecular origins of RecA-independent recombination. For cloned DNA that is unstable in *E. coli* with a *recA* deletion, addition of a *rarA* deletion (preserving the last 41 codons to preserve normal *serS* expression) may well improve stability.

The actual enzymatic activity that RarA engages in has only been partially defined. RarA promotes strand separation at duplex DNA ends or gap ends (Stanage et al., 2017). A close RarA homologue, Mgs1, promotes DNA annealing (Hishida et al., 2001). Our working hypothesis is that those two activities together constitute a DNA strand invasion activity somewhat similar to RecA. This would readily explain the apparent overlap in function in vivo (Shibata et al., 2005).
Additional proteins (a TLS polymerase like Pol IV?) might facilitate such a reaction. Alternatively, RarA could promote key steps in a single strand annealing recombination pathway. The results in Figures 3 and 7 suggest that RarA is somehow involved in the creation of crossovers that require the intervention of XerD to facilitate chromosomal segregation, adding to the implications of a RarA contribution primarily to intermolecular recombination events. To date, reconstitution efforts in vitro have been incomplete at best and do not yet provide a platform for more detailed mechanistic understanding.

The results in the current study define contributions to RecA-independent recombination that extend beyond RarA alone. Increases in RecA and RarA-independent recombination seen when the exonucleases ExoI and RecJ are deleted speak to the background generation of recombination intermediates that these exonucleases destroy. We note that all cellular helicases remain operative in these cells. As suggested previously (Bhargava et al., 2016; Lovett, 2017), single-stranded DNA generation could lead to a single strand annealing pathway of recombination. Although the effects of RecF and RecO deletions were generally minor, a few experiments suggest the presence of an additional recombination pathway that these proteins could contribute to (or in some cases interfere with) even in the absence of RecA. The effects of losing TLS DNA polymerases
in these assays are small but suggest a possible contribution of TLS polymerases to RecA-independent recombination.

Although we have postulated a role for RarA in the metabolism of DNA gaps and the effects of RarA on recombination are evident, the normal function of the RarA pathway in wild-type cells is not yet well-defined. On its own, a deletion of the rara gene has little effect on cell physiology or growth other than conferring a modest sensitivity to UV. The question of RarA function must be viewed in the context of a protein family (RarA, Mgs1, and WRNP1) that is among the most widespread and conserved of any family with a putative role in DNA repair (Barre et al., 2001; Bish & Myers, 2007; Branzoi et al., 2002a; Branzoi et al., 2002b; Crosetto et al., 2008; Hayashi et al., 2008; Hishida et al., 2001; Hishida et al., 2002; Hishida et al., 2006; Kawabe et al., 2006; Kim et al., 2005; Lestini & Michel, 2007; Nomura et al., 2012; Page et al., 2011; Sherratt et al., 2004; Shibata et al., 2005; Stanage et al., 2017; Yoshimura et al., 2006; Yoshimura et al., 2009). RarA family proteins contribute to genome stability in all cells in ways that give some urgency to a better functional understanding.

4 | EXPERIMENTAL PROCEDURES

4.1 | Strain construction

All strains are E. coli MG1655 derivatives and are listed in Table 1. ΔrarAN406 and raraK63R strains were made using a galK selection-based recombineering method described by Warming and Copeland (Warming et al., 2005). All other strains were constructed using Lambda Red recombination as described by Datsenko and Wanner (Warming et al., 2005). All chromosomal mutations were confirmed using Sanger sequencing. When required, antibiotic resistance of a given strain was eliminated using FLP recombinase encoded by the pLH29 plasmid as described previously (Huang et al., 1997).

Standard transformation protocols were used to generate strains harboring the plasmids (Lovett et al., 1993; Lovett et al., 2002) as indicated in Figures 1–6.

4.2 | Two-plasmid recombination assay

Strains were made chemically competent and transformed with the indicated pSTL330 + pSTL333 and pSTL330 + pSTL336 plasmids, followed by plating on LB plates containing chloramphenicol (20 μg/ml) and ampicillin (50 μg/ml) and incubating at 37°C overnight. Transformants obtained were then picked and inoculated in 3 ml LB/Ampicillin overnight for 12 hr at 37°C. Overnight culture were diluted 1:100 in fresh LB medium and grown at 37°C till OD600 reached 0.2. Cultures were then serially diluted in PBS to 10−6 and 100 μl of different dilutions were plated on Amp and Amp/Tet plates. The ratio of Amp/Tet to Amp colonies were determined at the dilutions that gave 30 to 300 colonies and repeat deletion frequencies were calculated.

4.3 | Statistical analysis

The difference between recombination efficiencies of different strains used in Figures 1–2 And 4–6 were statistically compared. Pair-wise t tests at a significance level of α = 0.05 were employed. To control for Type I error in this multiple testing scenario, the Bonferroni correction was used. Bonferroni correction was used to perform multiple comparisons, which adjusts the significance level of each comparison to \(\alpha = \alpha / m \), where \(m \) is the number of comparisons being made.

However, each case has a different number of variables (and consequently a different number of tests). Therefore, to make the comparison level consistent, Figure 1 was chosen as our baseline as it is present in all of the figures. Here, \(m = 6 \), and consequently, \(\alpha / m = 0.05 / 6 = 0.00833 \). The results are displayed in Figures 1–2 and 4–6.

4.4 | Plasmid repeat deletion assay

Standard transformation protocols were used to generate strains harboring the indicated pSTL57 plasmid. The transformants were selected on LB plates containing ampicillin (100 μg/ml) and the single transformants obtained were then streaked on Amp/LB plates and incubated at 37°C overnight. Colonies obtained were then picked and inoculated in 3 ml LB/Ampicillin overnight for 12 hr at 37°C. Overnight culture were diluted 1:100 in fresh LB medium and grown at 37°C till OD600 reached 0.2. Cultures were then serially diluted in PBS to 10−6 and 100 μl of different dilutions were plated on Amp and Amp/Tet plates. The ratio of Amp/Tet to Amp colonies were determined at the dilutions that gave 30 to 300 colonies and repeat deletion frequencies were calculated.

4.5 | Plasmid size gel electrophoresis

Tetracycline resistant colonies (10–17 in total) were chosen at random from each strain containing pSTL57 and grown at 37°C for 16 hr. Plasmids were purified using the Promega Wizard® SV Minipreps DNA Purification Systems kit and stored in 25 μl TE buffer at −20°C. DNA concentrations of each plasmid preparation were normalized and approximately, 100 ng was loaded on a 0.8% agarose Tris-acetate EDTA (TAE) gel. The gel was run at 100 V for 4 hr, stained and photographed.

4.6 | Growth curves

Overnight cultures of indicated strains were initiated from freezer stocks. Overnight cultures were then diluted 1:100 in fresh LB medium and 100 μl of each culture was added to a 96 well plate. Absorbance at OD600 were recorded at every 10 min for 22 hr at 37°C while shaking in a H1 Synergy Biotek plate reader.
<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Parent strain</th>
<th>Source/Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG1655</td>
<td>rarA + recA + exoJ + recF + recO + polB + dinB + umuDC+</td>
<td>MG1655</td>
<td>George Weinstock</td>
</tr>
<tr>
<td>EAW20</td>
<td>ΔrecA</td>
<td>MG1655</td>
<td>Lambda RED recombination</td>
</tr>
<tr>
<td>EAW974</td>
<td>ΔrarA</td>
<td>MG1655</td>
<td>Gal K recombineering</td>
</tr>
<tr>
<td>EAW1131</td>
<td>ΔrecA ΔrarA</td>
<td>EAW974</td>
<td>Transduction of EAW974 with P1 grown on EAW20</td>
</tr>
<tr>
<td>EAW907</td>
<td>rarAK63R</td>
<td>MG1655</td>
<td>Gal K + recombineering</td>
</tr>
<tr>
<td>KJ401</td>
<td>rarAK63R ΔrecA</td>
<td>EAW907</td>
<td>Transduction of EAW907 with P1 grown on EAW20</td>
</tr>
<tr>
<td>EAW1149</td>
<td>ΔrecJ ΔexoJ</td>
<td>EAW820</td>
<td>Transduction of EAW820 with P1 grown on EAW326</td>
</tr>
<tr>
<td>EAW1165</td>
<td>ΔrecA ΔrecJ ΔexoJ</td>
<td>EAW1149</td>
<td>Transduction of EAW1149 with P1 grown on EAW20</td>
</tr>
<tr>
<td>EAW1158</td>
<td>ΔrarA ΔrecJ ΔexoJ</td>
<td>EAW1147</td>
<td>Transduction of EAW1147 with P1 grown on EAW326</td>
</tr>
<tr>
<td>EAW1166</td>
<td>ΔrarA ΔrecA ΔrecJ ΔexoJ</td>
<td>EAW1162</td>
<td>Transduction of EAW1162 with P1 grown on EAW20</td>
</tr>
<tr>
<td>EAW1326</td>
<td>ΔrecF ΔrarA ΔrecJ ΔexoJ</td>
<td>EAW1162</td>
<td>Transduction of EAW1162 with P1 grown on EAW629</td>
</tr>
<tr>
<td>EAW1325</td>
<td>ΔrecO ΔrarA ΔrecJ ΔexoJ</td>
<td>EAW1162</td>
<td>Transduction of EAW1162 with P1 grown on EAW114</td>
</tr>
<tr>
<td>EAW1344</td>
<td>ΔrecA ΔrecF ΔrarA ΔrecJ ΔexoJ</td>
<td>EAW1326</td>
<td>Transduction of EAW1326 with P1 grown on EAW20</td>
</tr>
<tr>
<td>EAW1349</td>
<td>ΔrecA ΔrecO ΔrarA ΔrecJ ΔexoJ</td>
<td>EAW1325</td>
<td>Transduction of EAW1325 with P1 grown on EAW20</td>
</tr>
<tr>
<td>EAW629</td>
<td>ΔrecF</td>
<td>MG1655</td>
<td>Transduction of MG1655 with P1 grown on EAW277</td>
</tr>
<tr>
<td>EAW114</td>
<td>ΔrecO</td>
<td>MG1655</td>
<td>Lambda RED recombination</td>
</tr>
<tr>
<td>EAW669</td>
<td>ΔrecR</td>
<td>MG1655</td>
<td>Lambda RED recombination</td>
</tr>
<tr>
<td>EAW989</td>
<td>ΔrecF ΔrarA</td>
<td>EAW974</td>
<td>Transduction of EAW974 with P1 grown on EAW629</td>
</tr>
<tr>
<td>EAW984</td>
<td>ΔrecO ΔrarA</td>
<td>EAW974</td>
<td>Transduction of EAW974 with P1 grown on EAW114</td>
</tr>
<tr>
<td>KJ508</td>
<td>ΔrecR ΔrarA</td>
<td>EAW974</td>
<td>Transduction of EAW974 with P1 grown on EAW669</td>
</tr>
<tr>
<td>KJ380</td>
<td>ΔrecF ΔrecA</td>
<td>EAW629</td>
<td>Transduction of EAW629 with P1 grown on EAW20</td>
</tr>
<tr>
<td>KJ379</td>
<td>ΔrecO ΔrecA</td>
<td>EAW114</td>
<td>Transduction of EAW114 with P1 grown on EAW20</td>
</tr>
<tr>
<td>KJ511</td>
<td>ΔrecR ΔrecA</td>
<td>EAW669</td>
<td>Transduction of EAW669 with P1 grown on EAW20</td>
</tr>
<tr>
<td>KJ483</td>
<td>ΔrecF ΔrarA ΔrecA</td>
<td>EAW989</td>
<td>Transduction of EAW989 with P1 grown on EAW20</td>
</tr>
<tr>
<td>EAW1370</td>
<td>ΔrecO ΔrarA ΔrecA</td>
<td>EAW984</td>
<td>Transduction of EAW984 with P1 grown on EAW20</td>
</tr>
<tr>
<td>KJ512</td>
<td>ΔrecR ΔrarA ΔrecA</td>
<td>KJ508</td>
<td>Transduction of EAW984 with P1 grown on EAW669</td>
</tr>
<tr>
<td>EAW21</td>
<td>Δpol II</td>
<td>MG1655</td>
<td>Lambda RED recombination</td>
</tr>
<tr>
<td>EAW983</td>
<td>Δpol II ΔrarA</td>
<td>EAW974</td>
<td>Transduction of EAW974 with P1 grown on EAW21</td>
</tr>
<tr>
<td>KJ288</td>
<td>Δpol II ΔrecA</td>
<td>EAW21</td>
<td>Transduction of EAW21 with P1 grown on EAW20</td>
</tr>
</tbody>
</table>
4.7 | DNA damage sensitivity assay

Overnight cultures of indicated strains were diluted 1:100 in fresh LB medium. Cultures were grown at 37°C with aeration and shaking until the OD₆₀₀ measured 0.2. Aliquots (1 ml) were taken from each culture, serially diluted in 1X PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, 1 mM CaCl₂, and 0.5 mM MgCl₂) to 10⁻⁶. A 10 μl of each dilution were spot plated on agar plates containing the indicated DNA damaging agents. Plates were incubated overnight at 37°C and imaged the next day using a 700 FOTO/Analyst Apprentice Digital Camera System (Fotodyne, Inc.)

4.8 | In vivo cloning assay

4.8.1 | Preparation of PCR products for transformation

We used Phusion polymerase for PCR. The thermal cycler program was as follows: 98°C for 30 sec, followed by 30 cycles of 98°C for 10 s, 55°C for 20 s, and 72°C for 3 min, and a final extension of 72°C for 10 min. pUC_F and pUC_R and cat (pUC25)_F and cat(pUC25)_R oligonucleotides sets were used to amplify desired regions of pUC19 and pACYC184 respectively as indicated below (Nozaki & Niki, 2019). The final concentration of the template DNA in each reaction mixture was adjusted to 0.0147 ng/μl for pACYC184 and 0.028 ng/μl for pUC19 plasmids. The cat (chloramphenicol resistance) gene was amplified from pACYC184 DNA. PCR amplified DNA were digested by Fast digest DpnI enzyme for 20 min at 37°C.

pUC_F: 5′-GTTTTCCCAGTCACGACGTT-3′.
pUC_R: 5′-GCCTGATGCGGTATTTTCTC-3′.
cat (pUC25) F: 5′-GTAAGGAGAAAATACCGCATCAGGC
TGTGACGGAAGATCCTC-3′.
cat (pUC_25) R: 5′-TTTACAACGTCGTGACTGGAAAC
GGGCACCAATAACTGCCTTA-3′.

4.8.2 | Transformation

We used the modified TSS method as described (Nozaki & Niki, 2019) to introduce PCR amplified fragments into E. coli cells. In order to make competent cells, four overnight cultures, two of WT MG1655 and two of EAW974 (ΔrarA N406) were set by inoculating a few cells from a single colony in 1 ml LB media in sterile eppendorf tubes and incubating at 37°C for 20 hr with shaking. The OD₆₀₀ of each overnight culture was normalized to approximately 1.4 by dilution with LB media to a total final volume of 1 ml. The culture tubes were chilled on ice for 10 min and cells were pelleted at 5,000 × g for 1 min at 4°C. The supernatant was removed and the cell pellet was dissolved in 100 μl of an ice-cold solution consisting of 50 μl of LB, 40 μl of 2 x TSS media
(20% (wt/vol) polyethylene glycol 8,000 (PEG 8,000), 100 mM MgSO₄, and 20% (vol/vol) glycerol in LB media), and 10 μl dimethyl sulfoxide (DMSO). Control pACYC184 supercoiled DNA, 10 ng, was added to one each of the WT and ΔrarA prepared cell suspensions. Amplified linear DNA fragments, including 0.008 g of the CmR fragment derived from pACYC184 and 0.0165 g of vector fragment derived from pUC19, was added to the remaining prepared samples of WT and ΔrarA cells. The four mixtures were frozen immediately for one minute in liquid nitrogen. The tubes were then incubated on ice for 10 min, vortexed, and incubated on ice for another 10 min. LB (1 ml) was then added to each tube and incubated at 37°C for 45 min. The cells were centrifuged, supernatant was poured off, and the pellet was resuspended in the small amount of remaining supernatant. Each sample containing linear DNA fragments was plated on a single LB plate containing 20 μg/ml chloramphenicol and 50 μg/ml ampicillin. Each sample transformed with circular pACYC184 was plated on a single LB plate containing 20 μg/ml chloramphenicol. The plates were incubated at 37°C for 16 hr, and the colonies were counted. Colonies per gram of added DNA was calculated for each plate. Recombination efficiency was defined as colonies/g for the chloramphenicol/Ampicillin plates (cells transformed with linear fragments) divided by the colonies/g for the chloramphenicol plates (cells transformed with circular pACYC184). On each given day, the recombination efficiency for the ΔrarA cells was divided by the recombination efficiency for the WT cells to obtain the values plotted in Figure 8. This experiment was repeated eight times on eight different days.

4.8.3 | Assay of iVEC activity

PCR amplified fragments, linearized pUC19 with 20-bp homologous overlapping ends and an antibiotic resistance gene from pACYC184 were introduced into E. coli cells following the modified TSS method described above. A 5 ul of PCR amplified and Dpn1-treated cat fragment (CmR) from pACYC184 and linearized pUC19 (AmpR) were used for the transformation of ΔhsdR and ΔhsdR ΔrarA strains. The number of colonies resistant to both ampicillin and chloramphenicol after simultaneous introduction of the cat fragment and linearized pUC19 into indicated strains was calculated. The in vivo recombination efficiency of each strain was normalized by dividing the number of CmR AmpR recombinants to their transformation efficiency (CmR). The relative in vivo transformation efficiency of ΔhsdR ΔrarA with respect to ΔhsdR were then plotted in Figure 8b

ACKNOWLEDGEMENTS

We would like to thank Dr. Susan Lovett for the generous donation of pSTL330, pSTL333, pSTL336, pSTL57, pSTL67, and pSTL78 plasmids. Funding was provided by grant RM1 GM130450 from the National Institute of General Medical Sciences.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

K.J. and M.M.C. designed research; K.J. and E.A.W. performed experiments; K.J., Z.J.R., and M.M.C. analyzed data; and K.J. and M.M.C. wrote the paper.

DATA AVAILABILITY STATEMENT

All data associated with this study are available within the manuscript and supplementary materials.

ORCID

Michael M. Cox https://orcid.org/0000-0003-3606-5722

REFERENCES

Branzei, D., Seki, M., Onoda, F., Yagi, H., Kawabe, Y. & Enomoto, T. (2002b) Characterization of the slow-growth phenotype of S. cerevisiae whi1Δ g1Δ double deletion mutants. DNA Repair, 1, 671–682.

Huang, F., Spangler, J.R. & Huang, A.Y. (2017) In vivo cloning of up to 16 kb plasmids in *E. coli* is as simple as PCR. *PLoS One*, 12, e0183974.

D-loop disassembly by the RecQ-type helicase Rqh1. *PLOS Biology*, 12, e1001968.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.